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INTRODUCTION

Flow prediction or the relationship between precipitation and streamflow is at the very core
of the profession of hydrology. In our contemporary society there is considerable need for flow
prediction from the development and design of water resource systems for municipal and indus-
trial water supply, crop irrigation, flood protection, to instream flow needs, and many other uses
and demands. The different uses of streamflow requires that many different streamflow
characteristics be estimated. These characteristics include peak-flows, annual water yields, low-
flows, and stormflow volumes among many others. Forest road drainage is not different in that
there is a need to use the principles of statistical estimation to predict streamflow characteristics
for small forested watersheds. For live stream crossings, there are two streamflow characteristics
for which quantitative flow predictions are needed and these are:

1)  The maximum instantaneous discharge or peak flow for an installation for a given design
return period flow.

2) A range of discharges which represent the flows during which there is the highest likeli-
hood that fish will be moving through the installation.

For small forested watersheds the task of flow prediction is made more difficult by two
factors. First of all, unlike large watersheds which have the inertia of large amounts of water,
small watersheds tend to be quite "flashy" and respond rapidly to changes in precipitation. Small
forested watersheds tend to be the most "flashy" due to the high efficiency of the swreamflow
delivery system. As aresult, the flow from small forested watersheds tends to be highly variable
in time as well as in space. Also, the database for statistical estimation of flows from small for-
ested watersheds is woefully inadequate.

FLOW PREDICTION MODELS

In the discipline of engineering hydrology there are, in general, three types of models used
to predict flows. These are physical models, deterministic models, and empirical models. A
physical model is a scaled physical replica of a project which is subjected to rainfall or stream-
flow conditions representative of desired design conditions and then the response of the model is
observed. Physical models are predominantly used for large civil projects such as dams,
spillways, and bridges and they are only rarely used in forest hydrology. An example of the use
of physical models in forested streams is some recent flume studies to quantify the influence of
different orientations and sizes of large woody debris on local streambed scour.

In recent years, deterministic models have come to mean complex mathematical descrip-
tions of the hydrologic cycle. These models attempt to simulate hydrologic events by mathemat-
ically simulating watershed processes. Currently, their solution is only possible using
computers. Most deterministic models represent different processes in the hydrologic cycle with
formal mathematical expressions, often differential equations. However, the hydrologic cycle is
not so well understood that every process can be mathematically represented. Therefore, in
large, conceptual, watershed models many processes are represented by empirical expressions.
An example of a large, conceptual, waiershed model is the Stanford Watershed Model (SWM).
A schematic of the Stanford Watershed Model is shown in Figure 1. Large, watershed models
such as the SWM are seldom used for anything but research on forested watersheds. They are
not used for routine management because of their intense data requirements. First of all, there is
not an adequate research database to mathematically represent all the hydrologic processes in a
forested watershed. An example of a current information gap is the role of macropore flow in
stormflow generation. Secondly, most deterministic models need prohibitive amounts and qual-
ity of data to be initiated and run. This level of data has generally not been available for forested

watersheds on a management level.
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However, there is still a large and growing need for streamflow information from
ungauged watersheds and this demand has lead to the development of empirical models. Empiri-
cal models correlate streamflow characteristics with watershed characteristics or precipitation.
Most empirical models have a probabilistic base because they use probabilistic data, such as
precipitation, for input. This type of flow prediction model is by far the most widely used in the
forested environment and the types of empirical-models available and the use of the models is
increasing. Empirical models have the potential to be even more widely used because the data
they require both to develop and use is consistent with the types of data that are, for the most
part, available in a forested setting. The two primary tools that will be presented for estimating
peak flows and synthesizing streamflow records are empirical models based on watershed char-
acteristics and precipitation. '

Recommended Flow Prediction Methods

For the session today, we will present tools for both estimating peak flows and synthesiz-
ing streamflow records. For the situation where streamflow records are available, peak flows can
be estimated using flow-frequency analysis. Even though this situation is very rare and the
actual techniques of frequency analysis may never be used, this technique is the basis for the
estimation of many precipitation and streamflow characteristics. Therefore, the rational and
underpinnings of the technique need to be understood. In the situation where a watershed of
interest is in close proximity to a gauged watershed, the streamflow record or other hydrologic
data can be directly transferred from a gauged to an ungauged watershed and streamflow esti-
mates can be determined in that manner. The direct transfer of hydrologic data between hydro-
logically similar watersheds will be covered.

Finally, there is the situation that is encountered most frequently which is the need for
streamflow information on an ungauged, forested watersheds. Two models will be presented for
estimating flows for that situation. Peak flows can be estimated using Campbell’s equations
which correlate peak flows for a given design return period with watershed characteristics. Also,
streamflow can be synthesized using the Antecedent Precipitation Index (API) model which
requires a record of precipitation intensity and watershed area as input. '

Flow Prediction Methods Not Recommended

There are several flow prediction techniques that are not being included in this discussion
and by their omission are not recommended for use in small, forested watersheds. There are
three methods, Talbot’s formula, the Rational Rule, and the SCS Method that are conspicuous by
their absence because they have long been the standard, accepted methods for flow prediction in
these types of watersheds. All three methods will be presented briefly followed by a short dis-
cussion of why they are not considered appropriate for small, forest watersheds.

Talbot’s formula is an empirical expression which comes from the midwestern United
States and dates back to the late 1880’s when virtually nothing was known about hydrology or
hydraulic design. The formmla takes the form:

a=C@A,)

where a = culvert opening in ft*; C = a coefficient, ranging from 1.0 for steep, rocky ground
through 0.6 for hilly couniry of moderate slopes, to 0.2 for level terrain not affected by snow;
and, A, = drainage area in acres. The formula assumes a unique flow for a given end area
opening, an assumption which will be treated in some detail later in this session. Further, the
formula gives no opportunity for probabilistic assessment of peak flows except through the
coefficient and to my knowledge that treatment has never been undertaken. The Talbot formula



has little scientific verification and its widespread use is attributed to its simplicity and, for a
long time, the lack of anything better. It is not recommended for peak flow estimation in small,
forested watersheds.

The Rational Rule is an empirical relationship that is still widely used in engineering
hydrology for, among other uses, highway and sewer design. The method assumes that rainfall
of a uniform intensity covers the contributing area and runoff increases until the whole area is
contributing equally. At this point the runoff is the proportion of rainfall not infiltrating into the
soil. The expression takes the form:

Q=CIA

where Q = peak runoff rate in cfs; C = a coefficient ranging from 0.9 for concrete and pavement
t0 0.1 for woodlands; I = rainfall intensity in inches/hour; and, A = drainage area in acres. The
model is an infiltration limited model, therefore it is not consistent with the processes occurring
in forested watersheds. A probabilistic assessment of peak flows can be realized if the proper
design storm intensity is used however, the method requires that the precipitation intensity used
represent the design return period intensity for the time of concentration of the contributing area.
Therefore, the method requires knowledge of time of concentration values and precipitation
intensity-duration curves for small, forested watersheds. Time of concentration has been studied,
somewhat, for agriculiural watersheds but the concept has only been borrowed for forested
watersheds and has never been rigorously investigated. The precipitation intensity-duration data-
base for forested areas is predominantly for cities at low elevations and does not represent higher
elevations in forested watersheds. With knowledge of these shortcomings, the model can be
made to preform satisfactorily for forested watersheds if properly calibrated. However, without
the knowledge of how to adjust the input variables, it 1§ not recommended for peak flow estima-
fion for small, foresied watersheds by this audience.  ~ ' B

The Soil Conservation Service (SCS) Method is a precipitation driven streamflow simu-
lator which was developed and calibrated for small, agricultural watersheds. The method uses a
simplified infiltration limited model of runoff coupled with a empirical ranking of soils into
curve numbers due to hydrologic response, antecedent moisture, cover, and land use practices.
The curve numbers are used to generate synthetic unit hydrographs which are summed over time
to yield a simulated storm hydrograph. The method has many of the problems that the previous
two methods have that invalidate them for use in forested watersheds. First of all, the infiltration
limited runoff mechanism is at odds with the known processes in a forested watershed. Sec-
ondly, forest soils have never been properly and adequately calibrated for SCS curve numbers.
Finally, the shape of the synthetic unit hydrograph has to be adjusted to account for runoff
conditions from forested watersheds. In general, these problems invalidate the method for use by
the casual user. However, like the Rational Rule, it was believed that the proper individual, who
tnderstood forest watershed runoff processes and the SCS method, could make it work for for-
ested watersheds by adjusting soil curve numbers, watershed lag time, and unit hydrograph
shape. Fedora (1987) in his Master’s Thesis rigorously evaluated the SCS method for small,
forested watersheds in the Oregon Coast Range. He found that even when the curve numbers,
watershed lag, and unit hydrograph shape were adjusted or fitted, the performance of the method
was very poor. Adjusting the coefficients can not make up for the fact that the basic assumption
of the model, that runoff is a constant function of precipitation, make the method terribly ill-
suited for the complex storm patterns of coastal Oregon. For this reason the SCS curve number
method is not recommended for peak flow estimation or streamflow simulation for small,
forested watersheds.




FLOW FREQUENCY ANALYSIS

Flow frequency analysis is the technique of using the principles of statistical estimation to
make inferences about the total population of streamflows from some finite streamflow record.
Frequency analysis techniques can be used for any streamflow parameter of interest. We have
already discussed using the technique for the analysis of precipitation intensity data. The most
common use of the technique is for the analysis of annual peak flows which will be discussed .
today. But please realize that this technique is a basic statistical estimation technique that can be
used for droughts, low flows, stormflow volumes, annual precipitation, and almost any stream-
flow or precipitation parameter of interest.

In general, the technique is no different from any other statistical estimation technique.
The first step is to define the population of interest. Then a subset of the population is sampled
and the parameter of interest is measured. A frequency distribution is fitted to the sample data
and then the sample data is used to calculate the parameters that describe the population such as
mean and standard deviation. Once the population parameters have been estimated, inferences
about the population can be made with varying and known degrees of certainty. This is the basic
process taught in introductory statistics classes. The big difference for flow frequency analysis is
the frequency distribution that is used to describe the shape of the population. In introductory
statistics, the only frequency distribution that is discussed at any length is the normal distribu-
tion. Hydrologic data in general and flow data in particular never have a normal distribution but
are skewed and have what is called an extreme value distribution.

The technique of flow frequency analysis will be illustrated by working through an exam-
ple from Flynn Creek. The example will be for an annual series of peak flows. The data that
will be used is shown in Table 1. Please note that the data is discontinuous and comes from three
different time periods. The first time period is the 15 years of record from 1958 to 1973 during
the Alsea Watershed Study. The second time period is four years of record from 1977 to 1980
when Dr. Beschta was doing in-stream bedload research at Flynn Creek. The final data point is
from 1990 after the gauging stations had been reopened to do subsequent long term water yield
monitoring on the watersheds from the Alsea Watershed Study. The point is that a sweamflow
record does not need to be continuous to be of value. The annual series of peak flow data is
simply a sample and the 19 data points that have been captured represent a sample of the total
population. Their value as data points is in no way compromised by the fact that the streamflow
record is discontinuous.

Once the sample data has been collected, the next step is to divide the data into appropriate
flow classes and plot the frequency of peak flows in the flow classes versus the magnitude of the
classes. The resulting shape of the distribution should govern the selection of a theoretical fre-
quency distribution which approximates the observed frequency distribution of the sample.
There are several frequency distributions that can be used. Four frequency distributions will be
mentioned. They are:

1.  Normal distribution

2.  Log-normal distribution

3. The Gumbel extreme-value distribution, and
4.  The Log Pearson Type III distribution

The normal distribution will not ever be used for flow frequency analysis because it is not an
extreme value distribution. However, the example data set will be worked both graphically and
analytically using the normal distribution so that the concept can be illustrated with a familiar
frequency distribution. Hopefully, the addition of the normal distribution to this exercise will
make the concept easier to grasp. The other three distributions are all extreme value distributions
and are routinely used for flow frequency analysis. The only criteria for choosing any one distri-
bution over the other two is convenience or goodness-of-fit.
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~ Figure 2. A graph showing the frequency distribution of annual peak flows for Flynn Creek in
the Alsea Basin, Oregon.

A frequency distribution is shown for the Flynn Creek data in Figure 2. However, this is
not the form that most people expect to see flow frequency data in. The form that an annual
series of peak flow data is usually shown in is a camulative frequency distribution. A cumula-
tive frequency distribution of the same data is shown in Figure 3. There are two ways 10 esti-
mate the magnitude of different return period floods from frequency distribution data. One way,
the graphical method, is relatively easy but is neither terribly accurate nor precise and the other
method, the analytical method, is much more cumbersome but more precise and probably more
accurate.

Graphical Method

The graphical method involves simply plotting the magnitude of the peak flow against
either the probability and/or return period of that flow on the appropriate probability graph paper.
If the theoretical frequency distribution chosen for the sample data approximates the correct Ire-
quency distribution, then the data will form a straight line on the graph paper. The straight line is
the cumulative frequency distribution and the appropriate peak flow estimates can be read
directly off the graph paper. Before the data can be plotted however, some initial data prepara-
tion must be carried out to determine plotting positions. The first step is to rank the data with
highest magnitude flow being given a rank of m=1 and the lowest magnitude flow being given a

rank of m=n, where n is the number of records.

Then the probability and/or return period associated with each peak flow is calculated
using the relationship,



Table 1. Flynn Creek annual peak flow series and example calculations for plotting positions.

Plotting Position
Water Peak Flow Rank Probability of Recurrence
Year cfs m Exceedance, % Interval, yrs

1959 53 11
1960 - 43 18
1961 78 3
1962 46 15
1963 65 6
1964 63 7
1965 137 2
1966 73 4
1967 70 5
1968 45 16
1969 45 17
1970 50 13
1971 58 10
1972 139 1
1977 - 25 19
1978 61 8
1979 59

1980 51 12
1990 48 14

0= 64
Op= 29

where, p is the probability of occurrence, T, is the return period, m is the rank of the peak flow,
and n is the number of years of record. Please note that the probability of a peak flow occurring
is the inverse of its return period and vice versa. The calculation of plotting position for the
Flynn Creek data will be left as a class exercise.

Once the plotting positions have been calculated, the peak flows can be plotted on the
appropriate graph paper. The magnitude of the peak flow is plotted versus its probability of
occurrence or return period which ever is appropriate for the graph paper. Three types of graph
paper are provided for plotting the Flynn Creek data. The first is normal probability paper which
will plot the data as a normal distribution. This is provided as an opportunity to view how the
data looks with an inappropriate frequency distribution. Also, provided for plotting the Flynn
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Figure 3. Cumulative frequency distribution for the annual peak flow data from Flynn Creek in
the Alsea Basin, Oregon.



Creek data is a sheet of log-normal probability paper and a sheet of Gumbe! probability paper.
The Gumbel distribution is a commonly used frequency distribution for extreme value popula-
tions. It is so popular and commonly used for this purpose that its own graph paper has been
developed. The log-normal distribution is also a common way to treat extreme value
distributions. Once the data has been plotted, a linear "best fit" can be put in by eye on both of
the extreme value plots. At this point the mean of the population, the standard deviation, and
estimates of the magnitude of different return period peak flow events can be read right off the
graph paper. Operationally, flow frequency analysis can be done at this level for estimates of
different return period peak flows. :

Analytical Method

If graph paper is not available or if you wish to use a frequency distribution that doesn’t
have a graphical solution, the estimates of peak flows for designated return periods can be solved
analytically. The solution ’follows the form,

Q,,==Q=+CQ'Y

where, Q, is a peak flow of specified probability, p, O is the mean of the peak flow series, Oy is
the standard deviation of the peak flow series, and y is a frequency factor for the probability p for
the particular frequency distribution being used.

The solution of this equation is easiest to visualize for the normal frequency distribution.
In this case the parameters for the line take the form of the mean and standard distribution that
we are all comfortable with.

g=-2

n

,,/EQ—@")Z
O = '(‘nT

The values for y are the area under the normal distribution curve for given probability. These
values are listed in Table 2. The predictive equation follows the form shown above.

Table 2. Frequency factor y for the Normal Distribution.

Recurrence Interval, years
5 10 25 50 100
Probability, %

A
4

2
-l
—
>
[\
—

Frequency
Factor, y 0.8418 1.2817 1.7511 2.054 2.3267




The log-normal distribution is the same as the normal distribution except the log of the
peak flows are used instead of the actual values. The parameters then become,

XlogQ
n-1

logQ =

(logQ —logQ)’
n—1

Oogg =

The values of y for this distribution are the same as for the normal distribution and are listed in
Table 2. The predictive equation follows the form,

lOng = IOgQ + 0'logQ Y

The Gumbel extreme value type 1 distribution follows the same form as the normal distri-
bution. The mean, 0, and standard deviation, G, of the peak flow data are used in the peak flow

equation. The difference is that the standard deviation is multiplied by a frequency factor for the
Gumbel distribution which is a function of p. The form of this equation is,

g,= 0+ g K,
The K values for the Gumbel distribution are lisied in Table 3.

The final distribution for discussion is the Log Pearson Type III distribution. In the predic-
tive equation for this distribution the logarithm form of the parameters are used for mean, logQ,
and standard deviation, G,,,o. The equations for these terms have been given above. The form
of the predictive equation is,

logQ,=1logQ +0,,4 K,
yvhere K is a function of both p and a skew coefficient, C,. The equation for the skew coefficient
is,
__nZ(logQ —Tog0)’
T (n=1)(n=2)(Oige)’

where all the terms have been previously defined. Table 4 shows a list of K frequency factors
for the Log Pearson Type III distribution for different probabilities, p, and skew coefficients, C..
Please note that a Log Pearson Type III distribution with a skew coefficient of 0 is identical to
the log-normal distribution.

Table 3. Frequency factor K for the Gumbel Extreme Value Distribution

Recurrence Probability ‘ Record length, n
Interval, yrs % 20 30 40 50 100 200
5 20 0.92 0.87 0.84 0.82 0.78 0.76
10 10 1.62 1.54 1.50 1.47 1.40 1.36
20 5 2.30 2.19 2.13 2.09 2.00 1.94
50 2 3.18 3.03 294 2.89 2.77 2.80
100 1 3.84 3.64 3.55 3.49 3.35 3.27
200 0.5 4.49 4.28 4.16 4.08 3.93 3.83




Table 4. Frequency factor K for the Log Pearson Type III Distribution

Recurrence Interval, years ,
5 10 25 50 100
Skew Probability, %

Coefficient 20 10 4 2 1
2.0 .609 1.302 2.219 2913 3.605
1.0 758 1.340 2.043 2.542 3.022
.6 800 1.328 1.939 2.359 2.755
4 816 1.317 1.880 2.261 2.615
2 830 1.301 1.818 2.159 2.472
0 842 1.282 1.751 2.054 2.326
-2 850 1.258 1.680 1.945 2.178
-.6 857 1.200 1.528 1.720 1.880
-1.0 852 1.128 1.366 1.492 1.588
-2.0 777 .895 959 .980 990

It is unlikely that any of you will ever have to do a flow frequency analysis on a stream-
flow record. Most of you will spend your careers being faced with estimating peak flows for
ungauged watersheds. However, a clear understanding of how flow frequency analysis works is
critical to understanding the work that has gone into the regression equations for estimating peak
flows. There are certain assumptions that are implicit when using principles of statistical estima-
tion for peak flow data. These are that the data are random, independent, and homogeneous.
Methods are available for checking the homogeneity of data. They are not presented here and
rarely used because our peak flow data bases are so small that no data can ever be discarded.
Likewise, we know they are neither random or independent. The data usually cover a short time
span and are clumped together making them susceptible to the phenomena of persistence which
means that historically wet years follow wet years and dry years follow dry years. Despite these
facts we use statistical estimation techniques anyway. However, it becomes evident that terribly
sophisticated statistical techniques are not justified where the data base is compromised by ignor-
ing assumptions. This will be the case most of the time for small, forested watersheds. There-
fore, for small, forested watersheds, use the simplest techniques available.( For the vast majority
of gauged forested watersheds there is no reason to get any more complicated than a graphical
solution using log-probability paper for peak flow estimates in an operational, management set-

tiny

CAMPBELL’S EQUATIONS

The single piece of hydrologic information that is needed most often for adequate design
and maintenance of forest roads is design peak flows estimates for stream crossings. This infor-
mation need greatly outweighs the need for synthetic streamflow records to design for fish pas-
sage because, especially in contemporary forest road layout, the vast majority of stream
crossings will not be across fish bearing or even perennial streams. Current forest road layout,
especially in steep forest terrain, results in a large number of stream crossings of small,
ungauged, forest streams. In the past, the accepted and suggested methods for estimating design
peak flows for these small §iéams were such methods as Talbot’s formula, the Rational Rule, or -

tie SCS method. However; as-was-stated eatlier, these methods are no longer recommended for

use in these watersheds. They Hiave been replaced by a method, for Oregon, Teferred to as Camp-
bell’s equations. The method is named after the graduate student, Alan Campbell, who devel-




oped the equations as a part of his Master’s program at the Forest Engineering Department,
Oregon State University. The method is a set of regression equations which correlate different
design peak flow estimates for small, forested watersheds in six physiographic regions in Oregon
with watershed characteristics.

The method was developed by first dividing Oregon into six physiographic regions or
regions of hydrologic similarity. The regions are the Coast, Willamette, Rogue-Umqua, Cas-
cades, Blue-Wallowa, and Klamath regions and are shown in Figure 3. An annual series of max-
imum peak flows for 73 gauging stations in Oregon and seven in Northern California was
developed. The area of the watersheds ranged from 0.21 to 10.6 square miles. The watersheds
were all predominantly forested and the length of record ranged from 10 to 52 years with the
majority of the stations having a record length of between 10 and 20 years. For each gauging
station the Log-Pearson Type III frequency distribution was used to determine the magnitude of
the 10-, 25-, 50-, and 100-year return period flows. Then the peak flows were related to different
watershed characteristics using multiple regression. The watershed characteristics investigated
were drainage area, mean basin elevation, gauge elevation, main channel slope, main channel
length, percent forest cover, mean annual precipitation, 2-year 24-hour precipitation, mean mini-
mum January temperature, latitude, and longitude. The most important variable influencing peak
flow size is drainage area. The only other watershed characteristics that were important for peak
flow estimation were mean basin elevation for the Coast Region and mean annual precipitation
for the Cascade Region. All of the peak flow estimation equations for the six regions are listed
in Table 5 and the range of variables for the equations are listed in Table 6.

- REGIONS
Willamette
Coaat
Rogue-Umpgua

- Cgecade

Blue-Wallowa

Kismath .

NN\

[T N 2N R

gaging station

Figure 3. The six physiographic regions used for flood frequency analysis by Campbell. The
cross-hatched area is left undefined because of a lack of suitable data base.



Table 5. Recommended prediction equations for peak flows in Oregon.

Drainage Basin Characteristics: A = Drainage basin area (mi*); E =Mean basin elevation (feet);
P = Mean annual precipitation (inches)

Average Standard

Error Error

Equation R? (%) (log,, units)
WILLAMETTE REGION
Q=124 A” .83 23.3 129
Qs =156 A% .87 23.9 127
Q= 183 A .87 23.9 127
Qo= 212 A® | .86 24.1 129
VL COAST REGION
Qo = 5.87 ALO4E? .83 25.7 .140
Q,s = 6.31 AT.01 E*! 79 27.3 155
Qsp="7.77 ALO1 E* 79 26.1 155
Qig0= 8.40 A1.00 E® 78 26.0 .161
ot ASCADE REGION
Qo= .010 A.44 PP .80 20.4 .143
Qys = .023 K44 P .86 16.1 113
Qs = .063 A45 PYY .81 22.0 132
Q0= .111 A46 P 71 26.9 178
R -UMPQUA REGION
Q=125 A" 37 62.7 265
Qs = 163 A7 46 52.8 240
Qg =191 A% 50 48.6 228
Q0= 221 A® 53 46.9 224
BLUE-WALLOWA REGION
Qo = 46.7 A*® 39 62.7 265
Qys= 67.6 AY 46 52.8 240
Qs=852 A% 50 48.6 228
Qy0= 105 A 53 46.9 224
KLAMATH REGION

Q,;=30.8 A7 42 62.5 332
Q=419 A” 56 51.7 282
Qg = 54.5 A7 59 47.2 257
Qy0= 69.6 A 61 64.1 241

To use the equations, simply determine the physiographic region that your watershed is in
then determine its area. If the watershed is in the Coast or Cascades Region, then mean basin
elevation or mean annual precipitation, respectively, of the watershed needs to be determined.



Table 6. Range of variables in final prediction equations.

Area Precipitation Elevation
Region (km®) (cm) (m)
Willamette 0.96 - 13.44 = -

Coast 0.75 - 6.62 - 79 - 860
Cascade 0.54 - 20.72 127 - 224 -
Rogue-Umpqua 1.95 - 16.63
Klamath 2.51-27.45 — -
Blue-Wallowa 0.67 - 17.95 - -

Find the appropriate formula for the desired return period flow and simply calculate the esti-
mated peak flow. Be aware that the equations are available in both English and metric forms so
make sure the units are consistent and make sense.

In subsequent research updating Campbell’s equations, a sub-region in Southwest Oregon
and Northern California was found that has peak flows much greater that in the rest of the Coast
Region. In this sub-region, peak flows computed for actual flow data averaged twice the pre-
dicted values using Campbell’s equations and 25 year return period peak flows averaged twice as
large, on a per unit area basis, for the eight gauged streams than for the rest of the region.
Campbell’s equations are not recommended for this sub-region. In Southwest Oregon and
Northern California , peak flow estimates should be determined by direct transference of peak
flow data from the closest of the eight gauging stations used. This information is available in
WRRI Water Note 1989-1 by Andrus, Froehlich, and Pyles.

The information that has been presented so far concerning Campbell’s equations for peak
flow estimation is directed specifically at forested regions in Oregon. While the specifics of
other equations will not be presented here, this same method for developing peak flow estimation
equations has Beet used for many other regions. Ott Water Engineers (1979) and Waananen and
Crippen (1977) have carried out the same analysis and developed equations for estimating peak -
flows for Northern California and the entire state of California, respectively, The USGS has
déveloped peak flow estimation equations for most, if not all, of the United States for large
watersheds and this information is available in USGS Water-Supply Papers. With current PC
technology and database availability, this type of project is not an onerous task and there are
rumors of individual hydrologists for different agencies developing such equations on an infor-
mal basis for local areas. If all else fails and you don’t have access to such equations and feel
their development would be beneficial for your area, talk to the Forest Engineering Department
and fund a graduate student. The work can be done very easily and you will have helped out a

student.
FLOW TRANSFERENCE

Streamflow records or estimates of streamflow characteristics can be transferred directly
from gauged watersheds to ungauged watersheds if the watersheds are in close proximity and are
hydrologically similar. Hydrologic similarity is an ambiguous concept and there are no hard and
fast rules regarding it, however, two watersheds can be considered hydrologically similar if they:

1)  Are within the same meteorological regime.

2)  Have the same physical and biological characteristics such as soils, geology, relief,
shape, drainage density, and vegetation.

3)  Are approximately the same size, that is within one order of magnitude.



Once the watersheds are determined to be hydrologically similar, the actual transfer of
hydrologic information is quite easy. The simplest method of direct transfer is by adjusting
streamflow records by differences in watershed area. For example, the process can be as easy a
multiplying the streamflow record of the gauged watershed by the ratio of the ungauged to
gauged watershed areas. Streamflow records can also be adjusted by differences in watershed
elevation as well as mean annual precipitation which are both indicators of, potentially, a higher
rainfall regime. Like adjusting for watershed area, the process would be to multiply the stream-
flow record by the ratio of the ungauged to gauged mean watershed elevation or mean annual
precipitation. However, the assumption of hydrologic similarity should not be pushed too far.
The method is only good for rough approximations, at best, and the more adjustment that is
needed for the transfer of the hydrologic information the less dependable is the information.

Direct flow transference can be used to transfer entire streamflow records, making it a
technique for streamflow simulation, or only estimates of streamflow characteristics can be esti-
mated. For example, flow-frequency analysis can be caitied out for the original streamflow
record and peak flows for the traditional return period floods can be computed. Then only the
peak flow estimates can be transferred by adjusting them by area. Or the entire flood-frequency
curve for an ungauged watershed can be estimated by adjusting curves developed from a hydro-
logically similar watershed. An example of direct flow transference is Campbell equation’s
which are simply a method of direct flow transference of peak flow estimates within a region
considered hydrologically similar.

ANTECEDENT PRECIPITATION INDEX (API) STREAMFLOW SIMULATOR

In addition to passing the peak flow of a design return period flood, a stream crossing cul-
vert must also be able to allow for fish passage. There are several problems that arise with this
responsibility. One of the problems is determining the limiting flow depth and velocity for the
different times of the year for different life stages of different species of fish. We have had a
speaker address the complexity of this problem and the nature of the available data. However,
given that this data can be ascertained for an installation, the next step is to determine whether
these limiting values can be met or exceeded, in other words whether or not fish passage can be
assured, for some given flows. The question is what are these flows. Obviously, fish passage
will not have to be assured for peak flow conditions, but at some lesser intermediate flows. The
problem is determining the magnitude of those intermediate flows for which fish passage will
have to be assured for a given installation.

At the time of this writing, we simply don’t know how to determine the range of flows for
an installation for which fish passage must be assured. We do know however, that once these
flows are knows, we will need a fairly complete streamflow record from which the magnitude of
the desired flows can be determined. For gauged watersheds or for an ungauged watersheds in
close proximity to gauged watersheds for which direct transference can be used, obtaining a
fairly complete streamflow record is no problem. In both of these cases a streamflow record

exists or can be estimated fairly quickly. The problem that occurs is just like the problem for
design peak flows, the majority of the forested watersheds are unganged and remote from ganged
watersheds. What is needed is a tool to synthesize streamflow records for ungauged watersheds.
The observation has already been made that for large, deterministic watershed models, the data
demands are too excessive to be of use in an operational management setting. For years the rec-
ommended tool was the SCS method which, as discussed earlier, is no longer recommended
because of its deficiencies in streamflow synthesis for small, forested watersheds. To fill this
gap a simple, "black-box" streamflow simulation model has been developed that needs only
watershed area and a record of precipitation intensity to be initiated and run. The model is the
Antecedent Precipitation Index (API) method and it was developed by Mark Fedora as a part of
his Master’s program for the Department of Forest Engineering, Oregon State University. The
model has been tested for coastal Oregon watersheds (Fedora & Beschta, 1989) and for estimat-
ing peak flows and stream level in Hawaii and India, respectively.



The actual streamflow prediction model is a very simple linear regression model between
streamflow and the antecedent precipitation index (API). Fedora found that the best "fit" when
correlating streamflow to API was to use the square root of the streamflow, therefore the form of
the actual regression equation is:

NO,=b,+b, - API,

~ where b, and b, are the regression coefficients. Solving the above equation for Q, gives the
actual predictive equation

Ql = (b0+b1 API:)Z

It is important to remember that even though the above equation appears to be quite simple com-
pared to the complexity of the large, deterministic watershed models, the API method is empiri-
cally derived. Therefore, the regression coefficients contain the same influence over the
streamflow simulation process that the many watershed parameters and subroutines contain for
the larger, more complex watershed models. It is also quite evident that critical to this stream-
flow simulation model is the derivation of API, the antecedent precipitation index.

The value of API at any time was derived to give the streamflow at that time a complete
"memory" of all the precipitation falling prior to that time. However, the precipitation falling
long before the time of interest is not weighted as fully as precipitation falling just prior to the
time of interest. In this manner, the model has a complete "memory"” of rain falling at the time of
interest, a partial "memory" of rain that fell a short time ago, and only a vague "memory" of rain
that fell a long time ago. This variable memory is achieved by decaying the importance of rain
that fell before the time of interest by a rate identical to the rate of decay of the recession limb of
a streamflow hydrograph during a period of no rainfall. For example, Fedora found that for Deer
Creek, an experimental watershed during the Alsea Watershed Study, the two-hour decay coeffi-
cient, C,,,, was 0.929 meaning that during the recession limb of a hydrograph with no precipita-
tion, the streamflow for any given 2-hour period was 92.9% of the streamflow for the two hours
directly preceding the time of interest.

A
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Figure 4. Rainfall record showing rainfall increments and notation.



The equation for determining APT at any time is,
APlL,=p,+API,_,-C

where p is the precipitation just prior to the time of interest and C is the decay coefficient. The
nature of this equation can be understood a little better with the help of Figure 4. In this figure
there are five times of interest, t, to t,, and five periods of rainfall, p, to p,. We are interested in
an expression for the API at t,. The rainfall during the time period directly preceding t,, which is
Po» 18 not adjusted using the recession coefficient and will be related directly to discharge. The
rain falling immediately prior to t, will be adjusted by the recession coefficient and will become,

pa=p,C
The rain falling immediately prior to t,, will be adjusted by the recession coefficient raised to the
second power, giving,

P’ =Dy c*
The relationship can easily be discerned and the general form of an adjusted increment of rainfall
is,

pa=p, C"

The API value is then obtained by summing all the adjusted rainfall values from the inception of
rainfall.

APl =p,+p’ +p ,+p 3+...+p’,
By substituting the factored form of the adjusted rainfall values the above equation becomes,
APl =py+p,-C+p,-C*+p,-C*+..+p, - C™
By factoring out the recession coefficient term, C, the expression becomes,
API =py+C(p_+py-C+py-C*+..+p,-C™ ™Y
The term inside the parentheses is identical to the expression for API at time t;. By making this

substitution, we are back to the expression we started with.

Therefore, streamflow for an unganged watershed can be simulated if first a continuous
sequence of API values can be calculated for the time period of interest. Then these API values
can be multiplied by the appropriate regression coefficients and then squared and the values of
streamflow are known for the same time increment as the API values were determined.

Fedora has been undertaken this process for watersheds of the north-central Oregon Coast.
Data from Needle Branch, Deer Creek, Flynn Creek, North Yamhill Rlver and North Fork Sius-
law River were used tc determine recession coefficients to calibrate the API model. The reces-
sion coefficient C was found to be a function of the watershed area. Regression coefficients b,
and b, were determined for all five calibration watersheds and these regression coefficients were
also determined to be indirectly a function of watershed area via the recession coefficient and b,.

These relationships are,
Crreoms = 0.9+0.00793InA

b,=13.6-12.8C
b, =3.95—0.545b,



If all these expressions are put together, an expression is derived that will simulate streamflow
for watersheds in the north-central Oregon Coast Range. The final expression is,

0,=(2.816+0.5531nA +2.084PI, — 0.10105API,InA )

This expression, of course, is only good for the range of watershed conditions represented
by the database from the calibration watersheds. For this case this means watersheds from the
north-central Oregon Coast Range with an area less than 25,000 acres. A source of precipitation-
intensity data should be available within eight miles of the centroid of the watershed of interest
and the recession coefficient and all API values should be based on a two hour time interval. If
all these conditions are met then it is reasonable to expect that the above expression will be an
acceptable simulator of the range of streamflows expected for the watershed for given storm

magnitudes.

If a problem arises from the precipitation database and a time interval of other than two
hours is needed for the calculation of API values, this can be easily obtained by the equation,

C, = c,,(:_J

where C, is the recession coefficient based on time interval At,, and C, is the recession coeffi-
cient based on time interval At,.

This form of a streamflow simulation model has been tested for a watershed in the north-
central Coast Range and these results have been report in Fedora and Beschta (1989). Also,
Beschta (1990) has applied the model to simulate peak flows in Hawaii and river water levels in
India. The results show the API method should be able to simulate streamflows at a level of
accuracy acceptable to our uses of a streamflow simulator.
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